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LETTER TO THE EDITOR 

On the dynamics of random sequential absorption 
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$ Department of Physics, Weizmann Institute of Science, Rehovot 76100, Israel 
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Abstract. The dynamics of random sequential absorption on d-dimensional lattices is 
represented by a simple graphical expansion. Results for the entire filling process, and in 
particular its saturation limit are easily obtained. It is shown that the large-d limit of the 
saturation density is In 2d/2d. The expression gives an accurate approximation for d 2 3. 

Random sequential absorption (RSA) of particles on d -dimensional lattices occurs in 
many chemical, physical and biological processes. In many systems the binding of 
the particles to the lattice sites is very strong, and as a result desorption and intersite 
diffusion effects are negligible, resulting in an essentially irreversible process. Usually, 
the particles extend over several lattice sites, so the occupancy of a site affects the 
binding probability of its neighbours for the entire process. One-dimensional ( ID)  RSA 

models describe irreversible reactions between segments of polymers and binding 
ligands [ 1,2]. Chemisorption of molecules on surfaces [3 ,4]  and adsorption of particles 
on natural membranes [ 5 ]  are examples of 2~ RSA processes. In 3~ the model describes 
photochemical reactions in crystals [6]. 

The dynamics of the RSA models has been studied by several authors. For I D  

systems of this kind exact solutions have been obtained [ 1,7]. These analytical solutions 
are based on simple recursion relations among chains of different lengths. Evans et 
a1 [8] extended this approach to ZD lattices to obtain a hierarchy of recursive relations. 
Truncation of the hierarchy results in an approximate solution. Meakin et a1 [9] 
performed numerical simulations to estimate the density of maximal coverage of RSA 

models with nearest-neighbour exclusion for 1 s d G 4. 
The aim of this letter is to present a formalism for the dynamics of the RSA process. 

We apply Glauber dynamics [lo] to this problem and construct a simple graphical 
expansion for the density of occupied (‘reacted’) sites in terms of the elementary 
excitations of the model. The expansion is valid for all dimensions d. 

The basic point is that Glauber dynamics simplifies considerably when applied to 
a system with local interactions, with two states at each site (like the Ising model), 
which can only pass irreversibly from one state to the other (unlike the king model). 
We use this simplification to calculate quantities of interest, in particular the density 
of maximal coverage. This is done by calculating a few coefficients of the formal 
expansion and then summing the series using convergence acceleration methods. In 
addition we calculate the leading term in a l / d  expansion for the maximal coverage 
density. Both methods give excellent agreement with Monte Carlo results. Finally we 
discuss the RSA model at finite temperature within a Hamiltonian approach. 
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The dynamics is formulated in terms of a time-dependent distribution function 
P ( { s , } ,  t ) .  si are occupation variables which are defined as 1 for empty sites and 0 for 
full ones. We will explicitly discuss the case when the index i runs over the sites of 
a d-dimensional hypercubic lattice; the generalisation to other cases is straightforward. 

P satisfies a master equation [lo] 
N d - P(s ,  ?) = [ w(1 - s j ) P ( s ] ,  . , 1 - si, . . . , s N ,  t )  - w(si)P(s, t ) ] .  d t  i = l  

The transition rates W are given by 
W(sJ = si n sj+a = Bi 

s 

where S runs over the 2d nearest neighbours of si .  Correlation functions are defined 
by (F(s))=Tr,F(s)P(s,  t ) .  The density p ( t )  is given by 

where M (  t )  = ( s i ) .  We will next derive a hierarchical set of equations for M (  t ) .  To 
do this consider a general connected correlator M (  C, t )  = (sl , . , . , s,), where C is an 
'animal' on the lattice consisting of the points 1 , .  . . , n. Using ( 1 )  and (2) it is easy to 
see that 

p ( t ) = l - M ( t )  (3) 

where M ( C i ,  t )  = (s l , .  . . , si&, . . . , s,). Equation (4) means that dM(C,  t) /dt  is given 
by a sum of correlators of larger animals Ci, which are obtained by adding a d -  
dimensional cross at each site i of C. Obviously, if C is connected, so are the Ci. 
Equation (4) can be further simplified. Define NI( C) the number of inner points of 
C, i.e. those points with 2d neighbours. Since s2  = s, for i which is one of the NI inner 
points, Ci = C. Using this fact and redefining F (  C, t )  = exp[ NI( C)t]M( C, t )  and 
U = exp(-t), (4) turns into 

where NB(C) is the number of boundary points of C, i.e. the number of points with 
less than 2d neighbours. Thus the time dependence of F (  C, U )  is related to the bigger 
animals which can be generated from the boundaries of C. Equation (5) is almost 
what we need; using it we can compute the coefficients in the expansion of M (3): 

O 0 a  

,=0 n !  
M ( u ) =  "(U-l), 

where a, = d"M/du"l,,, . By sequential application of ( 5 ) ,  we can reduce the calcula- 
tion of a, to that of counting animals on the lattice, because F (  Ci, 1)  = 1 for all Ci 
which are generated from M ( t )  (this is just the statement that the initial conditions 
are compatible with the dynamics). 

The last simplification we need is expressing the C in terms of correlators of B. It 
is easy to see that for all descendants of M ( t ) ,  M ( C ,  t )  =(IIzl Bi) .  In this form, the 
animal is characterised by its inner points only. Each of the Ci is generated from C 
by adding one point to it in all possible directions (configurations with Ci = C are not 
counted). After adding the point, one has to check whether some other points (in 
addition to the one added explicitly) become inner points of Ci in the process. The 
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power of U in ( 5 )  is determined by the difference in the number of inner points between 
Ci and C (minus 1) .  Non-vanishing values of this power affect the calculation of a,. 

To clarify the procedure, we illustrate it in several special cases. First, we calculate 
the first few coefficients for generic d. ao= 1 for all d since M(1) = 1. dM/du  = F , ( u ) ,  
where F, = ( B )  (the animal is one point). Therefore a, = 1 too. To calculate a, we use 
d2M/du2 = dF,/du. F, is one point and there are 2d possible directions to add a point 
to it. Thus a, = 2d. The third cofficient follows from d3M/du3 = 2d dF,/du. There 
are two different animals consisting of three points which can be obtained from the 
one with two points. At this order only their total number which is 2(2d - 1 )  is 
important, therefore a3 = 2 x 2d x (2d - 1 ) .  From these coefficients we can deduce the 
short-t behaviour of the filling process: p ( t )  = 1 - (d  + i ) t 2 + O ( t 3 )  (in terms of single 
flip (computer) time we have to replace t + t /  N ) .  For higher n, a, can be counted by 
a computer. 

In d = 1 the a, can be computed exactly. The power of U in ( 5 )  is then (and only 
then) zero identically. The animals are labelled by the number of points n and ( 5 )  
takes the form dF,/du =2F,+,.  The solution to (6) is a, =2"-,  ( n  3 1 )  and M(u)  = 
;( 1 + e*("-,)). At t + 00 (U + 0) we find p(00) = i( 1 -e-'). 

For d = 2 we computed the first 10 coefficients and summed the resulting series ( 6 )  
using the Levin convergence acceleration method [ l l ] .  The table below presents the 
a, and the corresponding Levin approximants for p(00). The approximants form a 
fast converging monotonically increasing series, whose limit is estimated to be p(00) = 
0.3641( 1) .  The uncertainty in the last digit is enclosed in parentheses. 

n 3 4 5 6 7 8 9 10 

*" 24 176 1504 14560 156768 1852512 23783264 329070176 
p,(W) 0.3443 0.3545 0.3602 0.3630 0.3637 0.3639 0.36400 0.36405 

Another regime in which our expansion can be summed is that of large d. To 
leading order in l / d  the a,(d) can be obtained by the following argument. For large 
d, the effect of curling up of the animals that generate the a, is negligible. The different 
animals can be labelled solely by the number of points in them, N I .  In addition, 
because of the large number of independent directions in which one can add points 
to the animals, we can (with the above accuracy) make the following two simplifying 
assumptions. (i)  Neglect the directions in which the animals cannot grow since they 
are already occupied; thus the number of new animals obtained from a single point 
in C is 2d. (ii) Assume that N I ( C i ) - N I ( C )  = 1 for most C. This is the assumption 
that curled animals are rare at large d. Both assumptions can be quantified. Applying 
these assumptions to ( 5 ) ,  we get the asymptotic relation dF,/du = n x 2dF,+, . This 
gives in (6) af l=(n-1)!(2d)"-'  ( n a l ) .  Summing (6) we get M ( u ) =  
1 -(1/2d) ln[l-2d(u - l)], and from (3), p(c0) =ln(l+2d)/2d.  Strictly speaking we 
should drop the 1 in comparison with 2d, so that the final result is p(00) = In 2d/2d. 
We found however that for all values of 1 s d S 6 for which we checked, the correct 
p(00) was bounded by In 2d/2d < p(00) d ln(2d + 1)/2d as in the table below. 

We see that for d b 3 the approximation is very good and the error in the approximate 
values is less than 1 .5%.  The relationship between p(c0)  and the density of the glass 
transition will be discussed elsewhere [ 121. 
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d 1 2 3 4 5 6 

In 2d/2d 0.3466 0.3466 0.2986 0.2599 0.230 0.207 
P ( W )  0.4323 0.3641( 1 )  0.304(1) 0.264(1) 0.233(1) 0.209(1) 
In (2d + 1)/2d 0.549 0.40235 0.3243 0.275 0.240 0.2137 

Finally, we would like to discuss a different aspect of our problem, by comparing 
it with a similar equilibrium model. Consider the Hamiltonian 

r 1 

1 H = p  C B i +  ( l - s i ) ( l - s j )  
l i  ( i J )  

(7)  

in the large-p limit ( p  = 1/ T is a coupling constant). The first term in (7) suppresses 
configurations in which a site and all its nearest neighbours are empty. The second 
reflects a repulsion which tends to forbid configurations with occupation of nearest 
neighbours. In the limit of infinite p, the configurations which contribute to correlation 
functions of the Hamiltonian H are precisely the allowed final states of the dynamics 
( 1 )  and (2). One can now define Glauber dynamics for this Hamiltonian (e.g. by 
W ( s )  = e-1’2pAH(s)). It is easy to see that this dynamics coincides for infinite p (after 
an irrelevant rescaling of time) with (2). For finite p it incorporates the effect of 
diffusion and desorption of particles in a way consistent with detailed balance. For 
d = 1 one can easily calculate (using the transfer matrix) the one-point function (s) 
exactly. One obtains for the density p H ( m )  = 0.4115 . . . which is smaller than the 
saturation density of the corresponding RSA model p(m)  = 0.43233 . . . . The discrepancy 
results from the fact that although the allowed configurations are identical in both 
models their relative weights are different. This is a typical zero-temperature 
phenomenon. For any finite T, the W matrix is not reducible and thus from any initial 
configuration (in particular { s i }  = l),  P evolves to the unique stationary distribution 
P ( s )  a exp(-pH). The corresponding p ( m )  is (for large p ) ,  pH(m) + O( T ) .  For T = 0, 
W is highly reducible and p(m)  does depend on the initial conditions. Thus, for the 
above initial conditions, p(m, T )  has a jump as T+O from p H ( c o )  to p ( a ) .  The 
relationship between the two processes in higher dimensions as well as the properties 
at finite T are under investigation [12]. 
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